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Replication Strategies for Rare Variant Complex Trait
Association Studies via Next-Generation Sequencing

Dajiang J. Liu1,2 and Suzanne M. Leal1,2,*

There is solid evidence that complex traits can be caused by rare variants. Next-generation sequencing technologies are powerful tools

for mapping rare variants. Confirmation of significant findings in stage 1 through replication in an independent stage 2 sample is

necessary for association studies. For gene-based mapping of rare variants, two replication strategies are possible: (1) variant-based

replication, wherein only variants from nucleotide sites uncovered in stage 1 are genotyped and followed-up and (2) sequence-based

replication, wherein the gene region is sequenced in the replication sample and both known and novel variants are tested. The efficiency

of the two strategies is dependent on the proportions of causative variants discovered in stage 1 and sequencing/genotyping errors.With

rigorous population genetic and phenotypic models, it is demonstrated that sequence-based replication is consistently more powerful.

However, the power gain is small (1) for large-scale studies with thousands of individuals, because a large fraction of causative variant

sites can be observed and (2) for small- to medium-scale studies with a few hundred samples, because a large proportion of the locus

population attributable risk can be explained by the uncovered variants. Therefore, genotyping can be a temporal solution for replicating

genetic studies if stage 1 and 2 samples are drawn from the same population. However, sequence-based replication is advantageous if the

stage 1 sample is small or novel variants discovery is also of interest. It is shown that currently attainable levels of sequencing error only

minimally affect the comparison, and the advantage of sequence-based replication remains.
Introduction

Currently there is worldwide interest in studying the role

of rare genetic variants in the etiology of complex traits.

A number of studies provide evidence that rare variants

are involved in the etiology of complex diseases and quan-

titative phenotypes.1–5 Indirect association mapping via

tagSNPs is underpowered to detect associations with rare

variants resulting from the weak correlations between

higher-frequency tagSNPs and rare variants.6 Instead,

direct association mapping through sequencing candidate

genes, exomes, or entire genomes needs to be applied,

where variants are discovered and tested. With the rapid

development of cost-effective next-generation sequencing

technologies such as Illumina HiSeq, ABI SOLiD, and

Roche 454 as well as target enrichment methods,

sequence-based genetic association studies of complex

traits have beenmade possible. For targeting large numbers

of genetic regions, hybrid-based methods such as on-array

or in-solution capture with NimbleGen or Agilent products

have been very beneficial.7–9 When targeting small genetic

regions is of interest, such as in candidate genes, capture

methods that use molecular inversion probes are advanta-

geous.9 Although sequencing only captured genetic

regions can be cost and time effective, high sequencing-

associated cost is still a concern, especially for sequencing

a large number of individuals at high coverage, which is

necessary to accurately detect rare variants.

Another constraint of the application of next-generation

sequencing to association studies is error rate. Relatively

high false variant discovery rates have been reported for
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short reads technologies even at high coverage, e.g., Illu-

mina Solexa (6.3%) and ABI SOLiD (7.8%).10 Given these

concerns, there is interest in exploring alternative technol-

ogies after the variant discovery stage to extract informa-

tion from targeted genetic regions, such as customized

genotyping or the development of an exome genotyping

chip. Compared to next-generation sequencing platforms,

high throughput genotyping technologies can be more

cost effective and less error prone.

In this article, the plausibility of applying customized

genotyping and next-generation sequencing in replication

studies is explored from a combined genetic epidemiology

and population genetics perspective. In order to avoid

spurious or false positive findings in association mapping,

replicating significant associations discovered in an explor-

atory sample (stage 1)with an independentdata set (stage2)

is an indispensible part of every genetic association study. It

has been demonstrated that for the analysis of rare variants,

both single marker and multivariate methods used for the

analyzing common variants are underpowered because of

extreme allelic heterogeneity.6,11,12 Therefore, for mapping

rare variants, gene-based tests are usually performed, where

multiple rare variants in a gene region are jointly analyzed.

Many gene-based tests have been proposed such as the

combined multivariate and collapsing method (CMC),6

the weight sum statistic (WSS),12 and the test of aggregated

number of rare variants (ANRV).13 To replicate significant

findings in stage 1 studies, two different strategies can be

used. As a first strategy, only the variants at the nucleotide

sites uncovered from the original sample are followed up.

With this strategy, novel nucleotide sites that are present
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only in the stage 2 sample will not be incorporated in the

replication study. This constitutes a replication in a ‘‘strict’’

sense, i.e., both the gene region and the variants uncovered

in the stage 1 sample are followed up in the replication

sample. When only variants uncovered in the stage 1

sample are of interest, genotyping is sufficient.Wewill refer

to this replication strategy as ‘‘variant-based.’’ An alterna-

tive strategy is to follow-up the entire gene region identified

in the stage 1 sample. For this design, analysis of the stage 2

sample is not restricted to the nucleotide sites uncovered in

stage 1. Variants from novel sites in the replication sample

are also assessed for their associations with the phenotype

of interest. We will refer to this design as ‘‘sequence-based’’

replication. With this strategy, sequencing the target gene

in the stage 2 sample is necessary. The efficiencies of the

two proposed strategies are compared.

The power of the two replication strategies is dependent

on the percentage of causal variant sites that were uncov-

ered for the gene region in the stage 1 sample. If the stage

1 sample is small, there can be an advantage to sequence-

based replication, because many low-frequency variants

may not have been observed. However, the difference

between variant-based and sequence-based replication

strategies will diminish if a majority of causal variants

can be uncovered in stage 1. Discovery of SNPs via popula-

tion-based samples has been addressed previously.14,15

However, in these studies the population genetic models

employed were overly simplistic; they did not incorporate

complex human demographic history and purifying selec-

tion, which are well-known factors that can affect rare

variant site frequency spectrums.16 A rigorous population

genetic model for Africans was used with parameters

estimated from sequence data.17 Together with realistic

phenotypic models motivated by complex traits, we inves-

tigate the probability of uncovering rare variants in the

context of case-control studies and demonstrate their

impact on the relative performances of sequence- and

variant-based replication.

Additionally, the relative power of the two replication

strategies will also be affected by the error rates of

next-generation sequencing and customized genotyping

technologies that are employed. To assess the impact of

sequencing error on the power of rare variant association

mapping, a data-based sequencing error model is used.

The parameters of the sequencing error model were

estimated according to reported false-positive and false-

negative variant discovery rates from commonly used

next-generation sequencing platforms.7,10,18,19

It is demonstrated through extensive simulations that

the sequence-based replication is more powerful than

variant-based replication for both small- and large-scale

studies. In the ideal scenario where sequencing and geno-

typing are both of perfect quality, for small-scale studies

with several hundred cases and controls, a large proportion

of variant nucleotide sites will not be uncovered. However,

uncovered rare variants in small-scale genetic studies can

account for more than 80% of the locus-specific popula-
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tion attributable risk (PAR). Therefore, the power advan-

tage of sequencing can be small. For large-scale studies

with thousands of cases and controls, more than 90% of

the causative variant nucleotide sites can be uncovered

and nearly 100% of the locus PAR can be explained by

the uncovered rare variants. As a result, genotyping can

be a temporal solution for replicating stage 1 studies if

stage 1 and 2 samples are drawn from the same population.

Resequencing-based replication studies have an irreplace-

able advantage in that novel variants can be discovered.

This benefit is more pronounced when the stage 1 sample

is small. In the presence of sequencing errors, genotyping

errors, and unconverted genotyping assays, the relative

performances of two replication strategies remain largely

unchanged. We show that the power for sequence-based

association mapping is only slightly impacted by currently

attainable levels of error rates, for example, false-positive

rate/false-negative rates of 6.3%/1%10 or 10%/5%.19

In order to further illustrate the relative performances of

sequence-based and variant-based replication, phenotype

data on energy metabolism traits and sequence data from

the Dallas Heart Study on the ANGPTL3 (MIM 604774),

ANGPTL4 (MIM 605910), ANGPTL5 (MIM 607666), and

ANGPTL6 (MIM 609336) genes4,5 were analyzed with

CMC, WSS, and ANRV. The results provide solid support

for the simulation experiments.

Material and Methods

It is assumed that for a gene region of length L there are S variant

sites in the study population. The major allele at site s is denoted

by as, whereas the minor allele is labeled AS. The underlying L-site
genotype of an ‘‘individual’’ i is coded by a vector, i.e.,

X
!

i ¼ ðx1i ;/; xSi ; x
Sþ1
i ;/; xLi Þ. Without loss of generality, sites

1;/; S are assumed to be variant sites in the population. Domi-

nant genotype coding is adopted for variant nucleotide sites, i.e.,

xsi ¼
�
1 if the genotype at nucleotide site s is Asas;or AsAs

0 otherwise
; s¼1;/; S:

The genotypes at monomorphic sites are identically coded as 0,

i.e., xsi ¼ 0; i ¼ Sþ 1;/;L.

According to the approach in Li and Leal,6 the collapsed geno-

type is introduced with an indicator function d(d), i.e.,

Xi ¼ d

 XL
s¼1

xsi > 0

!
:

The affection status for individual i is encoded by a binary

variable Yi, which takes value 1 if the individual is affected and

0 otherwise.

Probabilistic Model for Sequencing Errors
Because of the presence of sequencing errors, the observed geno-

type of an ‘‘individual’’ imay be different from the true underlying

genotype. The observed genotype from sequence data is given by

Z
!

i ¼ ðz1i ; z2i ;/; zLi Þ, where

zsi ¼
�
1 if the genotype at nucleotide site s is called as Asas;or AsAs

0 otherwise:
Journal of Human Genetics 87, 790–801, December 10, 2010 791



The corresponding collapsed genotype Zi is similarly defined

as Zi ¼ dðPL
s¼1

zsi > 0Þ.
Two types of sequencing error events are given probabilisti-

cally.10 First, a false-positive event is defined as zsi ¼ 1; xsi ¼ 0g�
,

where a nonvariant genotype at nucleotide site s is falsely called a

variant. The error rate that corresponds to the false-positive event

is defined as the conditional probability es01 ¼ Pðzsi ¼ 1jxsi ¼ 0Þ.
Second, a false-negative event can be defined as zsi ¼ 0; xsi ¼ 1g�
where a variant at site s is falsely called homozygous for the refer-

ence allele. Its error probability is defined as es10 ¼ Pðzsi ¼ 0jxsi ¼ 1Þ.
To measure and report sequencing error at rare variant nucleo-

tide sites, it is common to use false-positive discovery rate and

false-negative error rate,7,10,18,19 i.e.,

cFP ¼
P

i;s d
�
zsi ¼ 1; xsi ¼ 0

�P
i;s d
�
zsi ¼ 1

� ; cFN ¼
P

i;s d
�
zsi ¼ 0; xsi ¼ 1

�P
i;s d
�
xsi ¼ 1

� : (1)

Empirical estimates of false-positive and false-negative rates are

usually obtained by comparing next-generation sequencing with

less error-prone technologies, e.g., Sanger sequencing or custom-

ized genotyping.10,19

By using reported false-positive and false-negative rates, base-

pair error rates can be calculated as

FP¼
PL
s¼1

e01P
�
xsi ¼ 0

�
PL
s¼1

e01P
�
xsi ¼0

�þð1� e10ÞP
�
xsi ¼ 1

�; FN ¼
PL
s¼1

e10P
�
xsi ¼ 1

�
PL
s¼1

P
�
xsi ¼1

� : (2)

The observed number of carriers of rare variants at site s in cases

and controls are defined, respectively, as ms
A and ms

U . For a sample

with RA cases and RU controls, ms
A;m

s
U marginally follow binomial

distribution based upon the above sequencing error model,

i.e.,ms
A ¼P

i

dðxsi ¼ 1;Yi ¼ 1Þ � BinomðRA; p
s
AÞ, ms

U ¼P
i

dðxsi ¼ 1;

Yi ¼ 0Þ � BinomðRU ; p
s
U Þ, where parameters p

!
A ¼ ðpsAÞs¼1;/;L;

p
!

U ¼ ðpsU Þs¼1;/;L are given by�
psA ¼ P

�
zsi ¼ 1 jYi ¼ 1

� ¼ ð1� e10Þ
3P

�
xsi ¼ 1 jYi ¼ 1

�þ e01 3P
�
xsi ¼ 0 jYi ¼ 1

�
psU ¼ P

�
zsi ¼ 1 jYi ¼ 0

� ¼ ð1� e10Þ
3P

�
xsi ¼ 1 jYi ¼ 0

�þ e01 3P
�
xsi ¼ 0 jYi ¼ 0

� ; s ¼ 1;/;L:

Models of Genotyping Errors
It is assumed that a set K of rare variant sites are uncovered in the

stage 1 sample. Rare variants from sites K are genotyped and fol-

lowed up in the stage 2 replication sample. Although the accuracy

for commercially available genotyping array is high, the error rate

for customized genotyping is not negligible.20 Additionally, assays

on customized probes may have a low conversion rate.

The observed locus genotype from genotyping data is denoted

by W
�!

i ¼ ðw1
i ;w

2
i ;/;wL

i Þ, where

ws
i ¼

�
1 if the genotype at nucleotide site s is called as Asas;

or AsAs

0 otherwise ; s˛K:

The corresponding collapsed genotype Wi is similarly defined.

For a converted assay, the genotyping error is traditionally mea-

sured as sample error rate (SER),21,22 i.e., SERs ¼ Pðws
i ¼ 1;

xsi ¼ 0jIsC ¼ 1Þ þ Pðws
i ¼ 0; xsi ¼ 1jIsC ¼ 1Þ; s˛K; where IsC is an indi-
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cator for an assay being successful (e.g., converted with genotype

calls generated) at nucleotide site s. Similar to sequencing errors,

the genotyping error rates at converted probes are defined as:

f s01¼ P
�
ws

i ¼ 1 j xsi ¼ 0; IsC ¼ 1
�
; f s10 ¼ P

�
ws

i ¼ 0 j xsi ¼ 1; IsC ¼ 1
�
; S˛K:

(4)

To facilitate comparisons of the two replication strategies, an

error ratio ER is introduced to measure the relative error rates

for two types of sequencing and customized genotyping errors.

It is assumed that ER ¼Ps˛K f
s
10=
PL

s¼1e
s
10 ¼Ps˛K f

s
01=
PL

s¼1e
s
01:

When the two replication strategies are compared in the presence

of imperfect technologies, two error ratios are used, i.e., ER ¼ 1 or

ER ¼ 0.5. The rate of success for a given assay at site s, i.e.,

PðIsC ¼ 1Þ, is assumed to be 90%.

For a genotyped sample with RA cases and RU controls, the

observed counts of carriers of variants at each nucleotide site

are denoted byN
!

A ¼ ðns
AÞs˛K, N

!
U ¼ ðns

U Þs˛K . The counts at

nucleotide site s follow a binomial distribution marginally,

i.e., ns
A � BinomðRA; q

s
AÞ, and ns

U � BinomðRU ; q
s
U Þ . The parameters

q!A ¼ ðqsAÞs˛K ; q!U ¼ ðqsU Þs˛K are provided by�
qsA ¼ P

�
zsi ¼ 1 jYi ¼ 1

� ¼ �1� f s10
�
3P

�
IsC ¼ 1

�
3P

�
xsi ¼ 1 jYi ¼ 1

�þ f s01 3P
�
IsC ¼ 1

�
3P

�
xsi ¼ 0 jYi ¼ 1

�
qsU ¼ P

�
zsi ¼ 1 jYi ¼ 0

� ¼ �1� f s10
�
3P

�
IsC ¼ 1

�
3P

�
xsi ¼ 1 jYi ¼ 0

�þ f s01 3P
�
IsC ¼ 1

�
3P

�
xsi ¼ 0 jYi ¼ 0

� ; s˛K:
(5)

Power Calculation for Sequence-Based

and Variant-Based Replication
Several test statistics formapping rare variants have beenproposed,

such as CMC,6 WSS,12 and ANRV.13 The ANRV test was developed

to detect associations with quantitative trait, but can be easily

generalized to the study of binary traits. These tests have been

shown to be more powerful than multivariate methods such as

Hotelling T2. Here, CMC,WSS, and ANRV are used in the compar-

isons of variant-based and sequence-based replication. The CMC

has a closed form exact distribution, which makes it

computationally efficient for candidate gene, exome-, and

genome-wide studies. The power of the permutation-based WSS

and ANRV methods were evaluated for small-scale candidate gene

studies. For all the scenarios evaluated, WSS and ANRV are more

powerful than CMC, but the comparisons for the two replication

strategies are largely unaffected by the choice of the test statistics.

For both sequence- and variant-based replicationwith CMC, the

association tests in both the stage 1 and stage 2 studies are imple-

mented via Fisher exact test, which compares rare variant carrier

frequencies between cases and controls. When the WSS and

ANRV statistic are used, to guarantee that type I error is well

controlled, p values are estimated empirically based upon 2000

permutations for each replicate. Because of the computation

intensity of estimating small empirical p values, the WSS and

ANRV were not used for the evaluation of power to replicate

large-scale studies.

The test statistics used for the stage 1 and sequence-based

stage 2 studies are denoted by TS1and Tseq, respectively. The

power of successfully replicating a true significant association

from the stage 1 study is investigated, i.e., PHA ðjTseqj >
z1�aS2=2jjTS1j > z1�aS1=2Þ, where aS1 and aS2 are significance levels

used for stage 1 and the replication study. Because the statistics

are conditionally independent given the parameters p
!

A and p
!

U ,

the following equation must be satisfied,
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PHA

� jTseq j > z1�aS2=2; jTS1 j > z1�aS1=2 j p!
A
; p
!U�

¼ PHA

� jTseq j > z1�aS2=2 j p!
A
; p
!U�

PHA

� jTS1 j > z1�aS1=2 j p!
A
; p
!U�

:

(6)

The power for variant-based replication is given

by PHA ðjTvarj > z1�aS2=2jjTS1j > z1�aS1=2Þ but unlike for sequence-

based replication, the test statistics Tvar, TS are not conditionally

independent. Under the alternative hypothesis, the distribution

of Tvar depends on K, which is the set of rare variant sites

uncovered in stage 1. Because it is impossible to enumerate the

parameter space of ð p!A; p
!

U ; q
!

A; q
!

U ;KÞ, an efficient Monte

Carlo algorithm was developed to calculate replication power for

both sequence-based and variant-based strategies (see Appendix).

For notational convenience, the ratio of total frequencies of

uncovered rare variants to the total frequencies of all locus rare

variants (including those that are not uncovered) is denoted

by fMAF ¼ P
s˛K

Pðxsi ¼ 1Þ=PS
s¼1

Pðxsi ¼ 1Þ.
In addition, the ratio

fPAR ¼
X

s˛KXC

P
�
xsi ¼ 1 jYi ¼ 1

��X
s˛C

P
�
xsi ¼ 1 jYi ¼ 1

�
; (7)

represents the proportion of locus PAR that can be ex-

plained by the uncovered causal variants. The probabilityP
s˛C Pðxsi ¼ 1jYi ¼ 1Þ is asymptotically equivalent to the epidemi-

ological definition of PAR, which is the reduction of disease

incidence rate that would be observed if the population were

unexposed, i.e., if there were no carriers of causative variants.

The power comparisons were performed for both the small- and

large-scale genetic studies. In order to have sufficient power to detect

associations, 250 cases/250 controls or 500 cases/500 controls were

used for both the stage 1 and 2 samples in a small-scale study. For

the scenario of a large-scale study, 2000 cases/2000 controls, as well

as 3500 cases/3500 controls were examined. For small-scale studies,

examples are given with significance levels aS1 ¼ aS2 ¼ 0.05.

The commonly accepted exome-wide significance level aS1 ¼ aS2 ¼
2.5 3 10�6 is used for large-scale genetic studies, which is based

upon Bonferroni corrections for testing 20,000 genes. The empirical

power for each scenario was estimated with 10,000 replicates.
Simulations of Complex Demographic Models

and Selections
To compare relative efficiencies of sequence-based and variant-

based replication strategies, population genetic data were gener-

ated with forward time simulations.23 Genetic data for the African

population were generated. The parameters for demographic

changes and selections were estimated in Boyko et al.17 The

demographic change for the African population is described

with a two-epoch instant change model. Purifying selection was

also simulated, with u and 2u being the selective disadvantage of

heterozygous and homozygous new mutations. Scaled fitness

effect g ¼ 2Ncurru (where Ncurr is the current effective population

size) is assumed to follow a gamma distribution, i.e.,

g ¼ �r; r � ba

GðaÞr
a�1expð�brÞ; where a ¼ 0:184; b ¼ 8200:

The model was shown to be parsimonious and fit the data well.

A mutation rate of mS ¼ 1.8 3 10�8 per nucleotide site per genera-

tion is assumed. Because the average length for human gene-

coding region is 1500 base pairs (bp) long,24,25 L ¼ 1500 bps was
The American
used in the simulation to specify the locus-scaled mutation rate.

Based upon the above parameter specification, 100 sets of rare

variant site frequencies were generated. As suggested by Kryukov

et al.,26 only nonsynonymous (NS) variants were used in the anal-

ysis in order to increase the signal to noise ratio and reduce the

negative impact of nonfunctional variants on power.

Generations of Phenotypic Model
Phenotypic effects of rare NS variants are assumed independent of

their fitness.24 Fifty percent of the rare NS variants (with MAF %

0.01) are randomly picked to be causal and affect the binary pheno-

type of interest. Based upon surveys of multifactorial diseases,27

two types of phenotypic models were considered. For the first

type of model, the genetic effects of causal variants are inversely

correlated with their MAFs. It is assumed that causal variants with

the smallest (or largest) MAFs (i.e., pmin or pmax) have largest (or

smallest) log odds ratio (log-OR) of bmax (or bmin), respectively.

For a causal variant with MAF pi, the log-OR follows the interpola-

tion relation: bi ¼ bmax þ (bmax � bmin)/(pmax � pmin)3(pi � pmin),

i ˛ C. The ORs for causal variants thus satisfy an exponential rela-

tionship with their MAFs. A choice of bmax ¼ log(10), bmin ¼ log

(2) was used. For the second type of model, each causal variant

has equal disease odds, which is given by bi ¼ log(3), i ˛ C. Under

both types of models, the affection status for an individual with

multisite genotype X
!

is assigned by the following model:

PðYi ¼ 1 j X!Þ ¼ exp
�
b0 þ

P
i˛C bsx

s
i

�
1þ exp

�
b0 þ

P
i˛C bsx

s
i

� : (8)

A baseline penetrance of 0.01 is assumed, which gives b0 ¼ log

(0.01/(1 � 0.01)).

Applications to the Dallas Heart Study Sequence Data
In order to illustrate the relative efficiency of sequence-based

versus variant-based replication strategies, a data set from DHS

was analyzed. The data set is a multiethnic population based

sample (1830 African Americans [AA], 601 Hispanics [H], 1045

European Americans [EA], and 75 individuals from other ethnic

groups) from Dallas County residents whose lipids and glucose

metabolism have been characterized and recorded.28,29 In order

to investigate how sequence variations in ANGTPL3, 4, 5, and 6

influence energy metabolism in humans, coding regions of the

four genes were sequenced via DNA samples obtained from 3551

participants in DHS.4 A total of 348 nucleotide sites of sequence

variations were uncovered in the four genes. Most of them are

rare and 86% of them have MAFs < 1%.4 Nine phenotypes were

measured and tested for their associations with rare genetic

variants, i.e., body mass index (BMI), diastolic blood pressure

(DiasBP), systolic blood pressure (SysBP), total cholesterol level

(TCL), low-density lipoprotein (LDL), high-density lipoprotein

(HDL), triglyceride (TG), very-low-density lipoprotein (VLDL),

and glucose. As a first analysis, to mimic the scenario of stage 1

study, individuals with quantitative trait values in the top and

bottom 10% of the phenotypic distributions were used to form

a case-control data set. Individuals with intermediate quantitative

trait values, i.e., in the range of 10%–35% and 65%–90%, were

used as a replication sample. Sequence-based and variant-based

replications were compared for the replication data set.

Among the identified significant results, the association

between TG level and rare variants in the ANGPTL4 gene was sup-

ported by in vitro functional studies and was replicated with an

independent data set.4,5 It is highly likely to be a true association.

Therefore, a second experiment was performed to estimate the
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Table 1. Discovery of Rare Variants in Small- and Large-Scale Genetic Studies

Proportion of Rare Variant Sites Uncovereda Proportiona

Number of Cases/Controls
in Stage 1 and 2 Samples All Causal

Locus PAR Explained
by Uncovered Causal
Rare Variants

Causal Variant Sites among
All Uncovered Rare Variant Sites

Variable Effect Phenotypic Model

250/250b 0.432 0.599 0.917 0.686
500/500b 0.524 0.687 0.950 0.645
2000/2000c 0.728 0.887 0.992 0.599
3500/3500c 0.808 0.943 0.996 0.572

Fixed Effect Phenotypic Model

250/250b 0.369 0.468 0.937 0.629

500/500b 0.455 0.547 0.960 0.591

2000/2000c 0.664 0.757 0.993 0.559

3500/3500c 0.751 0.827 0.995 0.538

a Rare variant data were simulated via African rare variant site frequency spectrums, and case control data sets were generated with variable and fixed effect
phenotypic models. A total of 10,000 replicates were generated and each reported value within the table was obtained by averaging over replicates where signif-
icant stage 1 results were obtained.
b Small-scale study: aS1 ¼ 0.05.
c Large-scale study: aS1 ¼ 2.5 3 10�6.
power for replicating the association between TG and rare variants

in the ANGPTL4 gene. Individuals with TG levels in the range of

top 35% and bottom 35% were used to form a case-control

‘‘cohort.’’ 50% of the cases and 50% of the controls from the

‘‘cohort’’ were randomly selected as the data set for the stage 1

study. The remaining 50% of cases and controls are used as the

stage 2 replication sample. The process was repeated 1000 times,

and for each replicate, sequence-based and variant-based replica-

tion was performed. The fraction of significant stage 1 studies

that were successfully replicated in stage 2 was reported for the

comparison of two different replication strategies. Association

tests with CMC, WSS, and ANRV were performed.
Results

Discovery Rate of Rare Variant Sites and Frequencies

Rare variant discovery rates were compared under the

assumption that sequencing data are of perfect quality

(Table 1). When sequencing is not perfect, the fractions

of uncovered rare variants will be lowered by false-negative

rate and additionally a portion of observed variants can be

false positives.

When a variable effect model is used, relatively low

proportions of variant nucleotide sites are uncovered

for small-scale studies. For example, in a sample of

250 cases/250 controls, 43.2% of all variant nucleotide

sites and 59.9% of causal variant nucleotide sites are

uncovered. On the other hand, a fairly large portion of

locus PAR (91.7%) can be explained by the uncovered vari-

ants.When a fixed effect model is employed, the results are

very similar (Table 1). A slightly lower portion of variants

can be uncovered but the uncovered variants explain

a higher fraction of locus PAR.

When a sample of 500 cases/500 controls was analyzed,

a higher proportion of variant sites are uncovered;
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however, considerable fractions of rare variant sites in

the population are still not observed in the sample for

both fixed and variable effect models. For example, when

the fixed genetic effect model is used, only 45.5% of causal

variant sites are uncovered.

For an exome-wide significance level aS1 ¼ 2.5 3 10�6,

a much larger sample size is necessary to obtain sufficient

power to detect significant associations.26 Under the vari-

able genetic effect model, when a sample of 2000 cases

and 2000 controls was analyzed, for a gene region that

attains exome-wide significance, a much larger fraction

(72.8%) of rare variant nucleotide sites are present in the

data set, and nearly all (88.7%) causal nucleotide sites are

uncovered. These uncovered variants explain nearly 100%

of the locus PAR. Therefore, in principle, when a large stage

1 sample is analyzed, the advantage of sequencing for novel

SNPdiscoveries diminishes as longas the stage2 samples are

drawn from the same population. Similar results hold if

a fixed effect model is assumed for the binary phenotype.

Because affected individuals are enriched in a case-

control sample, nucleotide sites containing causal variants

have a much higher probability of being uncovered than

noncausal variant sites. For example, if a fixed effect model

is assumed, 62.9% of the sites uncovered are causal variant

sites for a sample of 250 cases and 250 controls. This frac-

tion is much higher than the proportions of causal variant

sites in the general population (50%).
Power Comparisons for Sequence-Based

and Variant-Based Replication Strategies

The power was compared for sequence-based and

variant-based replication under different combinations of

false-positive/false-negative variant discovery rates, geno-

typing assay success rates, and error rates.
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Table 2. Power Comparisons of Sequencing-Based and Variant-Based Replication under Variable Effect Model

Ratesa Power for Replicationb

Number of Cases/Controls
in Stage 1 and 2 Samples False Positive False Negative Assay Succes Error Ratio Sequence-Based Variant-Based

250/250c 0 0 1 1 0.542 0.507

1% 4% 0.9 0.5 0.521 0.458

1 0.452

6.3% 1% 0.9 0.5 0.520 0.466

1 0.461

10% 5% 0.9 0.5 0.503 0.459

1 0.447

500/500c 0 0 1 1 0.731 0.708

1% 4% 0.9 0.5 0.719 0.675

1 0.667

6.3% 1% 0.9 0.5 0.718 0.674

1 0.674

10% 5% 0.9 0.5 0.701 0.672

1 0.661

2000/2000d 0 0 1 1 0.827 0.825

1% 4% 0.9 0.5 0.816 0.780

1 0.766

6.3% 1% 0.9 0.5 0.814 0.781

1 0.769

10% 5% 0.9 0.5 0.802 0.781

1 0.755

3500/3500d 0 0 1 1 0.899 0.898

1% 4% 0.9 0.5 0.893 0.870

1 0.863

6.3% 1% 0.9 0.5 0.893 0.868

1 0.865

10% 5% 0.9 0.5 0.886 0.874

1 0.858

a Significance levels for small-scale study: aS1 ¼ 0.05 and aS2 ¼ 0.05.
b Significance levels for large-scale study: aS1 ¼ 2.5 3 10�6 and aS2 ¼ 2.5 3 10�6.
c The impact of different combinations of false-positive/false-negative rate, assay success rate, and genotyping and sequencing error rate ratio on the replication
power is examined.
d The power was empirically estimated based upon 10,000 replicates.
In the ideal scenario where both sequencing and custom-

izedgenotypingqualities areperfect, thepower for sequence-

based and variant-based replication is jointly affected by the

sample size, the proportions of rare variants uncovered and

the fractions of uncovered rare variant sites that contain

causal variants. For most of the examined scenarios, the

power of sequence-based replication is consistently higher

than variant-based replication when CMC is used for anal-

ysis. For example, under the variable effect model (Table 2),

for a sample size of 250 cases and 250 controls, the power
The American
for sequence-based replication is 54.2% while the power of

variant-based replication is 50.7%. For large-scale genetic

studies, the power hardly differs between sequence- and

variant-based replication. This is because a large proportion

of variant sites are uncovered in the stage 1 sample, and

the uncovered variants account for nearly 100%of the locus

PAR. For example, for a gene that attains exome-wide signif-

icance in a sample of 2000 cases and 2000 controls, the

power for sequence- and variant-based replication are,

respectively, 82.7% and 82.5%.
Journal of Human Genetics 87, 790–801, December 10, 2010 795



Table 3. Power Comparisons of Sequence-Based and Variant-Based Replication under Fixed Effect Model

Ratesa Power for Replicationb

Number of Cases/Controls
in Stage 1 and 2 Samples False Positive False Negative Assay Success Error Ratio Sequence-Based Variant-Based

250/250c 0 0 1 1 0.446 0.437

1% 4% 0.9 0.5 0.432 0.392

1 0.386

10% 1% 0.9 0.5 0.429 0.399

1 0.390

6.3% 5% 0.9 0.5 0.410 0.390

1 0.378

500/500c 0 0 1 1 0.666 0.658

1% 4% 0.9 0.5 0.650 0.619

1 0.607

6.3% 1% 0.9 0.5 0.652 0.623

1 0.613

10% 5% 0.9 0.5 0.632 0.619

1 0.600

2000/2000d 0 0 1 1 0.765 0.767

1% 4% 0.9 0.5 0.747 0.703

1 0.689

6.3% 1% 0.9 0.5 0.746 0.705

1 0.694

10% 5% 0.9 0.5 0.724 0.700

1 0.669

3500/3500d 0 0 1 1 0.875 0.878

1% 4% 0.9 0.5 0.872 0.841

1 0.834

6.3% 1% 0.9 0.5 0.870 0.845

1 0.835

10% 5% 0.9 0.5 0.856 0.843

1 0.825

a Significance levels for small-scale study: aS1 ¼ 0.05 and aS2 ¼ 0.05.
b Significance levels for large-scale study: aS1 ¼ 2.5 3 10�6 and aS2 ¼ 2.5 3 10�6.
c The impact of different combinations of false-positive/false-negative rate, assay success rate, and genotyping and sequencing error rate ratio on the replication
power is examined.
d The power was empirically estimated based upon 10,000 replicates.
The power for sequence- and variant-based replication is

negatively impacted by sequencing and genotyping errors.

The impact of sequencing error is small. If the fixed effect

model is assumed (Table 3), for a sample size of 250 cases

and 250 controls, the power of sequenced-based replica-

tion is 44.6% in the absence of sequencing errors; when

a false-positive rate of 10% and a false-negative rate of

5% are assumed, the power drops to 41.0%. Although

a lower error rate is assumed for customized genotyping,

the advantage of sequence-based replication remains. For
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instance, in this scenario, for a genotyping call rate of

90% and an error rate ratio of 0.5, the power for variant-

based replication is 39.0%.

Comparisons of two replication strategies were also

made when WSS and ANRV were used for analysis of

both the stage 1 and 2 data sets (Table S1 available online).

Although the power is consistently higher for theWSS and

the ANRV than for the CMC, the relative performances for

sequence-based and variant-based replication are similar

in most situations. One noticeable difference is that
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Table 4. Analyses of Sequence Data from the ANGPTL3, 4, 5, and 6 Genes

p Values Proportion Ratio Number of Rare Variants Observed

Trait
Stage 1 Analysisa

(CMC/WSS/ANRV)

Sequence-Based
Replicationb

(CMC/WSS/ANRV)

Variant-Based
Replicationb

(CMC/WSS/ANRV)

Nucleotide
Sites Uncovered
in Stage 1

Rare Variant Freq
in Stage 1 Sample/
Rare Variant Freq.
in Entire Sample

Sequence-
Based
Replication

Variant-
Based
Replication

ANGPTL3

TCL 0.028/0.022/0.033 0.522/0.493/0.534 0.726/0.724/0.845 0.30 0.87 46/51 39/40

ANGPTL4

LDL 0.021/0.025/0.022 0.272/0.218/0.194 0.508/0.473/0.387 0.35 0.94 78/62 70/60
TG 0.027/0.022/0.009 0.025/0.016/0.019 0.039/0.028/0.027 0.26 0.92 77/51 69/46
VLDL 0.037/0.024/0.011 0.031/0.020/0.024 0.031/0.023/0.025 0.26 0.92 75/51 69/46

ANGPTL5

BMI 0.029/0.021/0.033 0.464/0.407/0.670 0.451/0.423/0.661 0.5 0.95 67/71 63/67
HDL 0.025/0.022/0.017 1.0/0.959/0.729 0.772/0.760/0.947 0.5 0.95 63/66 61/60

ANGPTL6

BMI 0.001/0.001/0.001 0.909/0.874/0.823 0.794/0.774/0.729 0.21 0.78 42/40 33/30

a For each phenotype analyzed, individuals with QTVs from the top and bottom 10% were used as a stage 1 sample.
b Individuals with QTVs in the range of 10%–35% and 65%–90% were used as the replication sample.
sequencing error tends to have a slightly more negative

impact on power for studies via the WSS. The power for

variant-based replication can be even higher than

sequence-based replication when WSS is implemented

for data analysis. For example, for a sample of 250 cases

and 250 under the fixed effect model, where the false-posi-

tive rate is 10%, the false-negative rate is 5%, and error rate

ratio ER ¼ 0.5, the power for sequence-based replication

(53.3%) is even lower than that for variant-based replica-

tion (54.7%).
Applications to the Dallas Heart Study Data

For the first analysis, the stage 1 and 2 data from the

ANGPTL3, 4, 5, and 6 genes are analyzed. Although a small

sample size (individuals with trait values in the top and

bottom 10%) was used for the stage 1 study, multiple

(novel) associations were detected with the CMC and

WSS (Table 4), i.e., (1) TCL with ANGPTL3 (pCMC ¼ 0.028,

pWSS ¼ 0.022, pANRV ¼ 0.033), (2) LDL with ANGPTL4

(pCMC ¼ 0.021, pWSS ¼ 0.025, pANRV ¼ 0.022), (3) TG with

ANGPTL4 (pCMC ¼ 0.027, pWSS ¼ 0.022, pANRV ¼ 0.009),

(4) VLDLwithANGPTL4 (pCMC¼ 0.037, pWSS¼ 0.024, pANRV¼
0.011, (5) BMI with ANGPTL5 (pCMC ¼ 0.029, pWSS¼ 0.021,

pANRV ¼ 0.033), (6) HDL with ANGPTL5 (pCMC ¼ 0.025,

pWSS ¼ 0.022, pANRV ¼ 0.017), and (7) BMI with ANGPTL6

(pCMC ¼ 0.001, pWSS ¼ 0.001, pANRV ¼ 0.001). Among these,

the association between BMI and ANGPTL6 is significant

even after Bonferroni correction for testing multiple geno-

types and phenotypes. For most of the analyses, approxi-

mately 25%–40% of the nucleotide sites observed in the

entire DHS sample are also observed in stage 1. The stage

2 replication sample consists of individuals with less

extreme quantitative trait values. To ensure that the power

of the stage 2 sample is adequate, the stage 2 samples are
The American
chosen to be larger than the stage 1 sample size. Two of

the seven identified associations in the stage 1 sample

were successfully replicated by both sequence- and

variant-based replication, i.e., associations between TG

and ANGPTL4 as well as between VLDL and ANGPTL4.

For both associations, sequence-based replication has

slightly smaller p values.

For the second analysis, the empirical power for repli-

cating the validated association between TG and rare

variants in ANGPTL4 gene was compared. When the

CMC is used, the empirically estimated power for

sequence-based and variant-based replication is 65.3%

and 62.7%, respectively. The power for sequence-based

replication is only slightly better. This is very compatible

with observations from simulated data. When the WSS

and ANRV are used, estimated power is greater but the

relative performances (69.3% versus 67.0% for WSS and

68.2% versus 64.4% for ANRV) are concordant.
Discussion

In this article, sequence-based replication and variant-

based replication for complex trait rare variant association

studies were compared with a rigorous population genetic

framework. It is demonstrated that in the ideal scenario

where sequencing and genotyping are both of perfect

quality, sequence-based replication is consistently more

powerful. However, because the uncovered variants can

account for a large proportion of locus PAR even for stage

1 studies with only a few hundred samples, the advantage

in power can be very small if stage 1 and stage 2 samples are

drawn from the same population. The power of sequence-

and variant- based replication studies is negatively im-

pacted by sequencing and genotyping errors. For currently
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attainable levels of sequencing errors, the impact is

minimal, and the advantage of using sequence-based repli-

cation studies remains.

It has been found previously that rare variants tend to be

population specific.27 Many studies have suggested that

disease-associated variants in different populations can

have very different frequencies. For example, the E40K

variant in ANGPTL4 gene was shown to be associated

with TG levels. The MAF for E40K is approximately 3%

in European-Americans but is very rare in African-Ameri-

cans and Hispanics.4 These differences can be observed

in even more closely related populations, for example,

rare variants in CFTR (MIM 602421), BRCA1 (MIM

113705), and BRCA2 (MIM 600185) genes have higher

frequencies in the Ashkenazi Jewish population compared

to other European Jewish populations such as Sephardic

Jews and also to non-Jewish populations.30,31 Population-

specific diversity of variant frequencies and sites is believed

to be more pronounced for rare variants than for common

variants because rare variants tend to be younger and occur

more recently in human history.27 When stage 2 samples

are drawn from a different population than the stage 1

samples, the variant-based replication studies may be at

a disadvantage. Given that the demographic and selection

models incorporating complex migration and admixtures

are limited,17 simulation studies for variant discovery

with multiethnic samples still remain to be explored. Eval-

uating the benefits and drawbacks of replication studies

with samples from different populations will be very

important.

This article also provides a model for incorporating

sequencing error uncertainties into downstream associa-

tion analysis. Some of the error rates discussed in this

article (e.g., FP ¼ 6.3%, FN ¼ 1%) are attained when a

saturated coverage depth is used. With the maturation of

next-generation sequencing technologies, as well as the

development of more sophisticated genotype calling algo-

rithms, such as using pooled population samples,32 even

lower rates should be attainable in the near future. For

currently attainable levels of sequencing errors, their

impact on the power of rare variant association mapping

is minimal.

The WSS is more sensitive to sequencing errors than the

CMC and ANRV, because it assigns higher weights to

lower-frequency variants.12 Sequencing error can create

false-positive variant sites that have very low allele

frequencies.32 Therefore, in some scenarios with higher

sequencing error rates, when analysis is performed with

WSS, sequence-based replication can be less powerful

than variant-based replication.

Although the error model for Sanger sequencing is well

known, the error model for next-generation sequencing

has not been extensively evaluated.19,33,34 Because of the

paucity of information on error rate estimation, our error

model assumes equal error rates across different nucleotide

sites. This is certainly an oversimplification. In practice, for

different frequency bins, different false-positive and false-
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negative discovery rates can be expected. The proposed

error model can be refined and applied to specific

frequency bins when corresponding false-positive and

false-negative rate estimates become available. Various

studies have shown that nonrandom systematic errors

exist and cannot be ignored.10,32 The systematic errors

can be dependent on the genetic context of the variants.

However, given that the main interest lies in gene-based

association mapping, modeling error rate variation across

different nucleotide sites may not be a necessity because

only their overall impact in the gene region needs to be

assessed. In particular, when the CMC method is used,

the power is affected only by total number of errors, but

not by the nucleotide sites where those errors occur. The

error rates used in our model can be taken as locus

averages. When comparing variant-based replication, gen-

otyping error rates are assumed to be equal or lower than

sequencing error rates. It can be argued that this is sensible

for two reasons. First, genotyping technology is more

mature than sequencing, so it tends to have a lower error

rate per base pair. Second, because customized genotyping

is performed only at nucleotide sites with putative poly-

morphisms, it is less error prone than sequencing

where SNP discovery and genotype calling are performed

simultaneously.

Population genetic data were generated through forward

time simulations. Both demographic change and purifying

selections are known to be important factors affecting rare

variant site frequency spectrums. Therefore, they are both

modeled and incorporated in the simulations. Two types of

phenotypic models were considered. According to surveys

on multifactorial disorders, most of the uncovered disease-

causative rare variants have ORs between 2 and 4.27

Although results are shown only for OR ¼ 3, OR ¼ 2 and

OR ¼ 4 were also investigated, and the conclusions remain

the same. On the other hand, variable effect models also

have empirical support. It has been observed that lower-

frequency rare genetic variants tend to have larger disease

odds compared tomore frequent variants.11,27 There is also

evidence that highly penetrant rare genetic variants may

be involved in the etiology of complex traits.35,36 Because

amajority of rare variants have very low frequencies, when

ORmax ¼ 10, ORmin ¼ 2 is used, most of the uncovered rare

variants have ORs % 4. The results of comparisons of

replication study designs remain valid and robust under

both types of phenotypic models.

In the examples discussed in this article, two different

significance levels are used in stage 1 (aS1 ¼ 0.05, aS1 ¼
2.5 3 10�6). These significance levels are chosen for illus-

trative purposes. In practice, the significant levels used

are dependent on the effective number of tests that can

be performed. Currently for exome data where analysis is

performed on a gene-by-gene basis, it is recommended to

use an a level of 2.53 10�6. This significance level is based

on the Bonferroni correction for testing 20,000 genes.

Because there is little linkage disequilibrium between rare

variants in different genes, a Bonferroni correction will
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not be overly conservative. If the analysis is not only per-

formed on the gene level but pathway analysis is also per-

formed, a more stringent a level is necessary. The choices

for stage 2 significance levels are also for illustrative

purposes. If gene(s) are found to be associated with a trait

of interest with an a level that adequately controls the

FWER in stage 1, it is not necessary to use the same strin-

gent a level to replicate the association. The appropriate

significance level is determined by the number of tests

performed in stage 2.

In order to proceed to replication, the stage 1 study must

be sufficiently powered to detect associations. For the

examples given in this article, the smallest sample size

shown is 250 cases/250 controls. Examples with smaller

sample sizes are not shown because if a realistic complex

trait model is used they will not be adequately powered.

Given the cost of whole-exome sequencing studies, some

existing studies use very small sample sizes. These studies

are mostly for exploratory purposes and targeted at

Mendelian disorders.7,8,37–39 They will be extremely under-

powered for detecting associations with rare variants

involved in complex disease etiologies.

Sequencing has an irreplaceable advantage over geno-

typing, which is to discover novel genetic variants. The

human population has experienced complex patterns of

demographic expansion and purifying selection.4,16 Large

numbers of very rare variant nucleotide sites exist. Based

upon observations from our extensive simulations and

real data, for moderate-sized stage 1 studies, only a limited

proportion of rare variant nucleotide sites can be uncov-

ered. Identifying and cataloging rare variants themselves

can be of great importance in genetic studies. Novel rare

causal variants that are uncovered will help enhance the

understanding of the genetic architecture of complex

traits. They can also be useful for risk prediction and

personalized medicine. And therefore, even if a gene is

implicated in disease etiology via variant-based replication,

it can still be beneficial to sequence the region in the stage

2 sample in order to uncover potential novel causal vari-

ants. For large-scale genetic studies with thousands of cases

and controls the yield of sequencing, the stage 2 sample

can be low, because the majority of the disease-causative

variants may have been identified in stage 1.

For both stage 1 and 2 studies, it is important to be able

to control for population substructure/admixture. If data

from genome-wide association studies (GWAS) are avail-

able for the stage 2 sample, it can be used to control for

population substructure/admixture. If GWAS data are not

available, customized genotyping can be advantageous to

targeted sequencing in that it can be used to genotype

additional unlinked markers to control for population

substructure/admixture.

With the rapid large-scale application of next-generation

sequencing, understandings of genetic etiologies of rare

variants will advance to an unprecedented level. Replica-

tions of significant findings will be an indispensible part

of every genetic study. Sequence-based replication for
The American
both small-scale and large-scale genetic studies is advanta-

geous andwill eventually be affordable and widely applied.

In the meantime, variant-based replication can be a

temporal cost-effective solution for replications of genetic

studies and will greatly accelerate the process of identi-

fying disease-causative variants.
Appendix A

Algorithm 1: An Efficient Algorithm for Estimating

Power for Gene-Based Replication

(1) Randomly pick one set of generated variant site

frequencies and select 50% of the rare variant sites as

causal, which effects the phenotype of interest.

(2) According to the chosen haplotype pool, the set of

causal variant sites, and error model, the variant site carrier

frequencies in cases and controls, i.e., p
!

A; p
!

U , are deter-

mined by formula (3). A stage 1 data set with OA cases

and OU controls and replication data set with RA cases

and RU controls are generated according to p
!

A and p
!

U .

(3) Repeat steps (1) and (2)N times, and for each iteration i,

the test statistics TS1
i ;T

seq
i are computed for the stage 1 data

set and the replication data set.

(4) The power of replicating a significant association

via gene-based replication, i.e., PðjTseqj > z1�aS2=2jjTS1j >
z1�aS1=2Þ, can be approximated by

bP� jTseq j > z1�aS2=2 j jTS1 j > z1�aS1=2

�
¼ 1=N

P
i d
� jTS1

i j > z1�aS1=2; jTseq
i j �z1�aS2=2

�
1=N

P
i d
� jTS1

i j > z1�aS1=2

� ;

where the numerator and denominator are consistent

estimators for PðjTS1j > z1�aS1=2; jTseqj > z1�aS2=2Þ and

PðjTS1j > z1�aS1=2Þ, respectively.
Algorithm 2: A Similar Algorithm for Estimating

Power for Variant-Based Replication Is Given Below

(1) Randomly pick one set of generated variant site

frequencies and select 50% of the variant sites as causal,

which affects the phenotype of interest.

(2) According to the chosen haplotype pool, the set of

causal variant sites, and error model, the variants site

carrier frequencies in cases and controls p
!

A; p
!

U are deter-

mined by formula (3). A stage 1 data set with OA cases and

OU controls is generated according to p
!

A and p
!

U . The set

of variant nucleotide sites in the stage 1 sample is denoted

by K. A corresponding replication data set of RA cases

and RU controls is generated based upon q!A ¼ ðqsAÞs˛K;
q!U ¼ ðqsUÞs˛K given by formula (5).

(3) Repeat steps (1) and (2)N times, and for each iteration i,

the test statistics TS1
i ;Tvar

i are computed for the stage 1 data

set and the replication data set.

(4) The power of replicating a significant association via

variant-based replication, i.e., PðjTvarj > z1�aS2=2jjTS1j >
z1�aS1=2Þ, can be approximated by
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bP� jTvar j > z1�aS2=2 j jTS1 j > z1�aS1=2

�
¼ 1=N

P
i d
� jTS1

i j > z1�aS1=2; jTvar
i j > z1�aS2=2

�
1=N

P
i d
� jTS1

i j > z1�aS1=2

� ;

where the numerator and denominator are, respectively,

consistent estimators for PðjTS1j > z1�aS1=2; jTvarj > z1�aS2=2Þ
and PðjTS1j > z1�aS1=2Þ.
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